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X-ray Diffraction from Fatty-Add Multilayers. Angular Width of Reflexions from 
Systems with Few Unit Cells 

BY W.  LESSLAUER 

Institute for Pathology, University of Basel, Switzerland 

(Received 6 December 1973; accepted 26 March 1974) 

Fatty-acid multilayers are highly diffracting systems. The number of unit cells is known from the 
manner in which they are prepared. Systems with from two to ten unit cells were studied by X-ray 
diffraction. The angular width of reflexions was observed to be a function of the number of unit cells. 
It can be substantiated that under these conditions the sampling of the absolute square of the struc- 
ture factor occurs by an interference function whose main maxima possess finite width around the 
reciprocal lattice points. The implications of these observations for a direct analysis of the intensity 
data are discussed. 

Introduct ion  

Multilayer systems of salts of long-chain fatty acids 
can be prepared by the technique of Blodgett (1935). 
They are built up on solid substrates by multiple 
passes through a monomolecular film of the fatty acid 
on the surface of an electrolyte solution. These multi- 
layers are a sequence of stacked, parallel bilayers. They 
are highly diffracting systems. The number of bilayers, 
N, in the multilayer is equal to half the number of 
passes through the monolayer. Diffraction of X-rays 
can thus be recorded from systems with known num- 
bers of unit cells. The case of multilayers with small 
N (i.e. N=2-10)  is of interest both for methodological 
and for theoretical reasons. (1) The experimental test 
of whether sampled diffraction data can be recorded 
from membrane-like systems with but a few cells 
relates to the general suitability of low-angle diffraction 
in the study of the structure of biological membranes. 
Diffraction methods have proved useful for special 
membrane systems such as myelin or photoreceptor 
membranes (e.g. Worthington, 1971) where naturally 
N is large. These systems are exceptional, but systems 
with a few stacked membranes may be prepared more 
readily. (2) The sampling of the absolute square of 
the structure factor in the case of small N is by an 
interference function whose maxima possess finite 
width. It follows from the theories of Hosemann & 
Bagchi (1962) that under these conditions the intensity 
information in the diffraction pattern may suffice for a 
direct determination of the structure. 

The electron density function ~o(z) of a multilayer 
system with small N (where z is a coordinate per- 
pendicular to the bilayer planes) is conveniently de- 
scribed by a convolution of the density function of 
one bilayer ~o0(z) with a finite lattice peak function 

o o  

O(z)---- Qo(Z)*[s(z) ~. 6(z-- hd)] (1) 

where s(z) is the one-dimensional shape function is(z) = 
1 for ]z[<Ncl/2, s(z)=O for ]z]>Nd/2 and Ss(z)dz= 

Nd], d the cell dimension in the z direction and 
O(z) a Dirac delta function. • stands for a convolution 
operation. The transform of Q(z) is T(Z). It becomes, 
with the convolution theorem, 

o o  

T ( Z ) =  dl F(Z)[S(Z),  ~=-oo ~ 6(Z-h/d)]  (2) 

where 

Qo(Z) ~ F(Z) s(z) ~ S(Z)= Nd sinc (nNdZ) 

and 

cll ~ ~(z-h/cl). ~ c~(z- hd) 

The symbol ¢> stands for Fourier transformation. The 
diffracted intensities are proportional to the absolute 
square of the transform, IT(Z)] 2, 

1 oo 
IT(Z)lZ= dZ IF(Z)Iz[Is(z)Iz. ~ 6(Z-h/d)] 

h ~ - - - o o  

=iF(Z)] z J (N,Z) .  (3) 

The interference function J(N,Z) is then represented 
by functions of the type (Nd) 2 sinc 2 (nNdZ) placed 
at every reciprocal lattice point by the convolu- 
tion with ~hC~(Z-h/d). For the following consider- 
ations it is assumed that the secondary maxima of 
the sine z functions are small compared with the main 
maximum and that they may be neglected. If then the 
integral width fla of a peak of the interference function 
as given in equation (3) is defined in a way analogous 
to that of yon Laue (1926) as the ratio of the integral 
A of J(N,Z) over the neighbourhood of a reciprocal 
lattice point, 

l 
h l d  + 

A = J(N,Z)dZ [e= 1/(2d)] 
~h/d-8 

to its maximum value J(h/d), one obtains with the 
approximation 

l 
h / d  + 

A ~_ [S(Z)]2dZ ~ _ Nd 
*3hid - -  n 

for the integral width fla ~ _ 1/(Nd). 
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Since the experimentally observed quantity is the 
angular width of reflexions, it is more convenient to 
express this result as the integral angular width of a 
peak of J(N,Z), fl: 

fl= 2/(Ud cos 0) (4) 

where 2 is the wavelength of the radiation and 20 the 
diffraction angle. This result is a special case of the 
general expression for the integral width of Debye- 
Scherrer lines derived by Stokes & Wilson (1942). 

A generalized form of the Patterson function, P'(z), 
is obtained either from P'(z)=~(z).Q(-z) or from 
equation (3) by P'(z) ~ IT(Z)I 2, 

P'(z)= d Po(z).[a(z) ~(z-hd)] (5) 
h ~  m o o  

where Po(z) is the autocorrelation function, P0(z)= 
00(z)*0o(-Z). Po(z) has a width of 2d. a(z) is a tri- 
angular function with a(z)=Nd[1-1zl/(Nd)] for 
Izl -< Nd and a(z) = 0 for Izl > Nd. Then [a(z)~O(z 
-hd)] is a scaled lattice peak function from - N d  
to +Nd, where the j th peak has a scaled value of 
(N-I j l )d .  The generalized Patterson function, there- 
fore, is non-periodic; it can be represented by the sum 
of scaled and overlapping autocorrelation functions 
Po(z) placed at jd ( - N < j <  +N). It is obvious that 
as N----~ co, P'(z) degenerates into the common Pat- 
terson function. 

In the analysis of a structure P'(z) has to be cal- 
culated from the intensity data, which are for the case 
of small N discussed here a continuous function of Z. 
This can be done by choosing an arbitrary sampling 
interval AZ for the intensity function. By introducing 
a fractional coordinate ( such that Z=(AZ,  P'(z) 
becomes 

,,z,:l 2 IT(Z)I z exp (-2zcizZ)dZ 

,~, 2AZ~  I T~I z exp ( -  2rciz(AZ) . (6) 

P'(z) calculated by the approximation in equation (6) 
is strictly non-periodic only in the limit AZ ~ O. For 
finite AZ, P'(z) calculated in this way has a period of 
1/AZ. Then AZ must be chosen in a manner to avoid 
overlapping from neighbouring P'(z); this condition 
is met if 1/AZ~2Nd. Obviously, the experimentally 
derived P'(z) does not include contributions from 
I Td z for ( which are smaller than a certain minimum 
value (,,i,, since diffraction cannot be recorded around 
the origin. Also, it is of limited resolution, correspond- 
ing to the reciprocal-space cut-off at a certain (max 
in the diffraction pattern. The experimental generalized 
Patterson function P;xp(Z) thus uses only a part of 
the intensity function given by the product of IT(Z)[ 2 
with a window function W(Z) of width A(=  (max- (rain 
and centred at [ZI=A(/2. It follows that P~xp(Z)= 
P'(z).[w(z)2 cos (zcA~z)], where w(z)= A( sinc (z~A~z). 

Materials and methods 

Details on the preparation of the fatty-acid multi- 
layers according to Blodgett (1935) are given in the 
preceding article. For a multilayer with small N special 
care has to be taken that a whole number of bi- 
layers is transferred into the multilayer system. This 
can be done by removing the monomolecular film from 
the water surface before the support is finally with- 
drawn. Also, the monomolecular film must be spread 
and handled with special care in order to make certain 
that a true monolayer is transferred in every pass. De- 
tails of the procedure for building up multilayers with 
the desired structure must be determined by trial and 
error. Even then an occasional specimen may show 
minor diffraction phenomena superimposed on the 
typical lamellar diffraction. 

Details of diffraction experiments are given in the 
preceding article. Diffraction patterns were recorded on 
Ilford Industrial G X-ray film. Densitometer traces of 
diffraction patterns were obtained with a Joyce-Loebl 
double-beam microdensitometer MK IIIb with an ef- 
fective slit width of 15 /~m or less. The effective slit 
width, therefore, was always less than 0.4% of the 
spacing of the lamellar reflexions in the diffraction pat- 
terns. 

Results and analysis 

X-ray diffraction was recorded from barium stearate 
multilayers with N=2, 3, 4, 5, 6 and 10 and from 
magnesium stearate multilayers at 100% relative hu- 
midity with N=2, 3 and 31 (Fig. 1). It appears from 
Fig. 1, and can be verified from densitometer traces 
of the patterns reproduced in Fig. 2 that with the barium 
stearate structures the peak maxima occur in regular 
intervals proportional to 1/46"9A~ -~. The standard 
variations for the positions of the peak maxima for 
the different N are the equivalent of about +0.5-  
1"0 .A, and no significant asymmetries of the peaks with 
respect to the reciprocal lattice points h/46.9 .A, -1 are 
observed. It may be concluded, therefore, that within 
the limits of the experimental errors the positions of the 
peak maxima of the intensity functions coincide with 
those of the peak maxima of the interference function 
at h/d. The spacings h/d do not significantly depend 
on N. 

Only a few reflexions were observed with the mag- 
nesium stearate structures with small N. The variations 
in the spacings of the reflexions were larger than with 
barium stearate and, in particular, the fifth and sixth 
reflexions are shifted by a larger amount than expected 
from the variations of the spacings in the barium stear- 
ate structures (the spacing of the peak maxima of 
reflexions 4 and 5 is 1.07/d and that of reflexions 5 and 
6 is 0.89/d). Although reflexions 5 and 6 are weak, 
these shifts may be significant and due to the fact 
that the sampling here occurs in a region where 
d[IF(Z)I2]/dZ is large. 
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Fig. 1. Examples of diffraction patterns from barium stearate 
multilayers with 2 (a), 3 (b), 4 (c), 5 (d) and 10 (e) bilayers and 
from magnesium stearate multilayers at 100% relative 
humidity with 3 (f)  bilayers. Films of approximately equal 
density were chosen. (Contact prints of the original diffrac- 
tion patterns. The added weak scattering in (a) originates 
from the camera set-up in that experiment.) 

[To .face p. 1933 
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The angular width of the reflexions does very clearly 
vary inversely with N (Figs. 1, 2). A quantitative evalua- 
tion of this variation is given in Figs. 3 and 4. Fig. 3 
presents normalized densitometer traces of the third 
reflexions of the barium stearate multilayers with dif- 
ferent N. The third reflexions were chosen, because 

(a) 

Fig. 2. (a) Densitometer traces of diffraction patterns from 
barium stearate multilayers with (from top to bottom) 2, 
3, 4, 5 and 10 bilayers. The examples given were chosen be- 
cause they had comparable densities and could be densitom- 
etered with the same optical wedge and slit settings (h= 
1-7). 

(b) 

Fig. 2 (cont.) (b) Densitometer tracings of diffraction patterns 
from magnesium stearate multilayers at 100% relative hu- 
midity with 3 (top) and 31 (bottom) bilayers ( h = -  1,-2,  
-3).  

they are strong and the level of background radiation on 
either side of the reflexions is approximately the same. 
Also, corrections for oblique incidence of the diffracted 
ray on the film may be neglected. The measured integral 
angular width fl as a function of N is given in Fig. 4 
together with the theoretical values. In Fig. 4, fl has 
been corrected for (a) camera geometry and (b) the 
fact that IF[ 2 for the barium stearate bilayer is not 
constant in the sampling interval 2/(Nd)  centred at 
h/d. The error resulting if the integral width of the 
reflexion fl~ is taken for fl becomes obvious from the 
following considerations for the case N-- 2. The bilayer 
structure can be represented by the model (see pre- 
ceding paper) 

Q(z) - ~ ~ P . gp ( z ) , [~ ( z -  d/2) + fi(z + d/2)] 
- m .  g,,(z),fi(z) 

where gp,,,,(z) are normalized Gaussian functions and 
P and M scaling factors. The Gaussians can be as- 
sumed to be narrow. Furthermore, the scaling factor 
P is larger than M. Then IF[ 2 for the model structure 
is of the type 4P cos z (rcdZ) in the range of Z con- 
sidered in this discussion. The interference function 
for N = 2  is 4 cos z (rcdZ). The integral width of peaks 
of the interference function and of the intensity 
function, fl and fit, for this model can be calculated 
analytically, and their ratio becomes fl/fl~ = 4/3. The in- 
tegral width of peaks of the intensity function, which 
is the experimentally observable quantity, must then 
be corrected in order to obtain ft. The correction 
factors fl/fl~ which were applied to the experimental 
data in Fig. 4 were derived from an analogous com- 
parison of the intensity and interference functions. The 
interference function was computed from 

N - - 1  

J ( N , Z ) = N +  2 ~ ( N - n )  cos (2nndZ)  
n = l  
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and IF(Z)I 2 was reconstructed after the Fourier sam- 
pling theorem (Shannon, 1949; Sayre, 1952) with data 
from barium stearate multilayers with many unit cells 
(see preceding article). The intensity function is then 
given by equation (3). It is noted that fli is independent 
of the absolute value of IF(h/d)[ 2, and the correction 
factors are readily obtained from the thus computed 
intensity and interference functions. For the barium 
stearate data the values obtained are 1.30, 1.16 and 
1.04 for N=2 ,  3 and 4. For N>4 ,  fl/fl~ is approximately 
1-0. Similar arguments led to the calculation of the 

3/. 7/2 . 
Fig. 3. Superposed densitometer traces of the third reflex- 

ions from barium stearate multilayers with 2 (a), 3 (b), 4 (e), 
5 (d) and 10 (e) unit ceils. The peaks are normalized to the 
same height at h/d. The respective base lines are marked a, 
b, ¢, d and e. The profile of the primary beam used in the 
experiments is included (innermost curve). 

x 10 3 

15 

10 

i ! i | 

2 4 6 8 10 

N 
Fig. 4. Integral angular width fl (with standard variation) as 

a function of the number of cells, N, in barium stearate (e) 
and magnesium stearate (A) multilayers. The theoretical 
curves are included (the dashed curve refers to the mag- 
nesium stearate structure). ,8 is given in radians. 

correction factors for the width of the third reflexions 
of the hydrated magnesium stearate structures in Fig. 
4. 

Discussion 

Theoretical and experimental values for fl in Fig. 4 
do not match exactly. It is obvious that for the smaller 
N especially the observed integral width is too small, 
although a significant increase in width with decreasing 
N is documented. Besides the mentioned correction 
factors, fl/fli, several additional factors have an in- 
fluence on the measured width of reflexions. 

(1) The primary beam is not monochromatic, parallel 
and homogeneous. Ni-filtered Cu Ke radiation was used. 
The increase in fl~ due to the non-monochromaticity 
may be neglected. If the difference in wavelength of 
Cu Kcq and Cu Kc~2 is taken as a measure of non- 
monochromaticity, the relative increase in width due 
to this factor is less than 0.01. No exact data on the 
homogeneity of the beam are available. However, the 
profile of the primary beam recorded under the same 
conditions as the patterns in Fig. 1 is a measure of 
its angular divergence. From this the influence of the 
beam profile can be evaluated. Both the primary beam 
(G1) and the ideal diffracted beam without instrumen- 
tal broadening (G2) will be approximated by normal- 
ized and scaled Gaussian functions, 

G1, 2(Z) = ~1, 2al, 2 exp ( - zca~, 2Z 2) 

with the integral widths of 1/a, and l/a2. The integral 
width of the reflexion which is observed under the 
given experimental conditions is then represented by 
the convolution Gx*G2 (Stokes, 1948). Using the fal- 
tungs theorem this can easily be shown to be another 
Gaussian function of an integral width of (1/a~2+ 
1/a2) 1/2. If the ratio of the measured widths of the 
reflexions to the width of the primary beam is called 
z, the relative error due to beam divergence becomes 
~, 1/(2z2). From Fig. 3, z can be estimated. It follows 
then that the relative error in fl~ caused by beam 
divergence increases from 0-01 for N = 2  to 0-10 for 
N =  10. If the measured values in Fig. 4 were corrected 
for this broadening, they would fall on a curve roughly 
parallel to the theoretical curve. The measured values 
are, however, systematically too small by an average 
of about 25 % of the measured value. 

(2) The diffuse radiation background of the camera 
and the characteristics of the X-ray film contribute 
to the experimental errors in ft. On the densitometer 
traces a linear interpolation of the minima on either 
side of the lamellar reflexions was taken as base line. 
Both parasitic scattering from slits, windows and beam 
stop and incoherently scattered radiation add to this 
base line, which has in typical patterns a density of 
about 0 .5-1 .00.D.  Microdensitometer traces were re- 
corded with an optical wedge with a range of 3 .00 .D.  
Peak maxima were typically about 2 . 0 0 . D .  above 
base line. The relation between exposure and density of 
photographic emulsions for X-rays is linear for low 
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exposures. At higher exposures resulting in densities 
larger than about  1.0 this linear relation is no longer 
valid. The photographic film used in these experiments 
deviates significantly from the proportionali ty of ex- 
posure and density above about 1.5 O.D. (Commission 
on Crystallographic Apparatus,  1956). The densities 
at the peak maxima,  therefore, are no longer in the 
linear range of the emulsion. The observed densities 
on the film then are the same as those which were 
observed with an ideally linear emulsion in a hypotheti- 
cal camera designed in such a way that the background 
radiation exclusively fills up the min ima  around the 
reflexions. Therefore, the base line chosen on the den- 
sitometer traces of the diffraction patterns by the above- 
mentioned criterion is too high by an undetermined 
amount,  and the measured width of the reflexions is 
proport ionately too small. It should be noted also that 
for small N larger than N = 2  there are secondary dif- 
fraction peaks in the region between the main lamellar 
reflexions at about h/d which can be observed oc- 
casionally. The existence of these secondary diffraction 
maxima  increases the difficulties in finding the true 
min ima  on either side of the main  lamellar reflexions. 

(3) With regard to the microdensitometer,  an op- 
t imum between resolution and sensitivity obviously 
has to be found for the slit settings of the optical system 
of the instrument.  

Despite these l imitations it is obvious that the ob- 
served broadening of reflexions for decreasing N is 
due to the fact that IFI z is sampled by an interference 
function with peaks of finite width around h/d. The 
continuous intensity curve from these patterns, there- 
fore, provides information not only on the value of the 
absolute square of the structure factor at the ideal re- 
ciprocal lattice point h/d, but also in its neighbour- 
hood. The gain in information compared with diffraction 
data from systems with large N is similar to that in 
swelling experiments, where the same transform is 
sampled in slightly different intervals.* A convenient 
analysis of  these data is by the generalized Patterson 
function P'(z), which can be used to obtain the auto- 
correlation function P0(z), and consequently the elec- 
tron density function ~o0(z) by a deconvolution of Po(z) 

(Hosemann & Bagchi, 1962). The main  effects of ex- 
perimental errors in the recorded intensities on P'(z) 
can be discussed in relation to equations (3) and (5). 
The relative error in the experimentally determined 
width fli with respect to the theoretical value fli, t h e o r  

will be called ),, i.e. ~'=(fli--fli, theor)/fli" This is most 
conveniently expressed as an error in the integral width 
of the term IS(Z)I 2 in equation (3). From equation (5) 
it follows then that P'(z) will be terminated by the 
term a(z) at Izl = ( 1 -  Y)/fltheor. Therefore, P'(z) will not 
disappear exactly at Iz l=Nd,  but rather will extend 
to higher values of [zl to an amount  determined by y. 
Consequently the scaling down of P'(z) will be too 
slow and its values at the lattice points z = j d  will be 
P ' ( j d ) = d [ N - l j l / ( 1 - y ) ] P o ( O )  ( - N < j < N ) .  It could 
be demonstrated, however, that the direct analysis of 
the recorded intensity function by a deconvolution 
of Po(z) can be performed successfully with the 
data from the stearate multilayers despite these ex- 
perimental errors (Lesslauer, 1971 ; Lesslauer & Blasie, 
1972). 

Conclusions 

From the general properties of  the fatty-acid multi- 
layers (e.g. Bficher et al., 1967) there is little doubt  
that under appropriate experimental  conditions one 
single monolayer  is incorporated into the mult i layer 
every time it passes through the monomolecular  film 
on the water surface. Therefore, the number  of bi- 
layers in the system is known exactly. Discrete re- 
flexions can be recorded in X-ray diffraction experi- 
ments with such systems containing as few as two 
unit cells. It can be substantiated that the increase in 
width of reflexions observed with decreasing N is due 
to the fact that IF(Z)[ z is sampled over observable 
finite intervals around the reciprocal lattice points. 
The demonstrat ion of this result is relevant, because a 
direct analysis of  diffraction data becomes feasible un- 
der these conditions. 

Diffraction experiments were performed during the 
author 's  stay at the Depar tment  of  Biophysics and 
Physical Biochemistry of the University of Pennsyl- 

* To show the equivalence of swelling experiments and the 
present arguments assume that continuous IF(Z)I 2 is known 
[Oo(Z)=Oo(-z)]. Then Oo(Z) can be calculated, because the 
continuous IF(Z)I z fixes the phase signs, or alternatively, be- 
cause the transform of IF(Z)I z yields the autocorrelation func- 
tion Po(z), which can be deconvoluted. In swelling experiments 
IF(Z)I 2 is sampled in intervals h/d corresponding to the normal 
period d and in addition in slightly different intervals 1/dt, 
1/d2 etc. with swollen structures such that IF(Z)I 2 becomes 
known in a certain region around each hid. What is known 
then is the product of [F(Z)I z with a series of window func- 
tions W(Z) placed at each h/d. If this product is called IFscl z, 
one can write 

1 
IF~dZ)IZ=IF(Z)IZ[W(Z) * d ~ 6(Z-h/d)] . 

A kind of Patterson function P~c(z) can be calculated in anal- 
ogy with equation (6) by IF~¢l z -~ e~=, 

P~¢(z),-,const. AZ ~ IFs¢(~)l z exp ( -2niz~AZ).  

From the definition of IFs¢l 2 and the faltungs theorem it fol- 
lows that Ps¢ can be represented by 

Psc(z) = eo(z) * [w(z) ~ 6(z-hd)] . 
h 

P~¢ is then the sum of autocorrelation functions placed at h/d 
by the scaled lattice peak function [w(z) Y. 3(z-hd)], where 
P~(hd)=Po(O)w(hd). Since w(z) is a known function [i.e. 
of the type sinc (z)], the autocorrelation function can be 
obtained from P~,. Once Po(z) is known, the electron-density 
function is also known, because the continuous IF(Z)I' can 
be calculated by Po(z) ~" IF(Z)I z and the phase signs of reflex- 
ions, therefore, are determined, or alternatively, because Po(z) 
can be deconvoluted. Throughout this discussion the assump- 
tion is made that the correct solution among the symmetry- 
related solutions can be recognised by independent reasoning. 
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Hydrogen Bond Studies. LXXXVI.* An Asymmetric Non-Centred HsO~- Ion: 
Neutron Diffraction Study of Picrylsulphonic Acid Tetrahydrate, 

IHsO21+IC6H2(NO2)3SO3] -o2H20 

BY JAN-OLOF LUNDGREN AND ROLAND TELLGREN 

Institute of  Chemistry, University of  Uppsala, Box 531, S-751 21 Uppsala, Sweden 

(Received 1 March 1974; accepted 16 April 1974) 

A three-dimensional single-crystal neutron diffraction study has been made of picrylsulphonic acid 
tetrahydrate. The crystals are triclinic, space group P]', with two formula units in a cell of dimensions: 
a=8.346 (1), b= 11.367 (1), c=8-065 (2)A, ~=97.77 (2), fl= 109.32 (1), ~,=83.22 (1) °. A full-matrix 
least-squares refinement based on F 2 gave a final R value of 0-052. The structure comprises H502 + ions, 
picrylsulphonate ions and water molecules. The diaquahydrogen ion is of the asymmetric non-centred 
type. The hydrogen atom in the short [2.436(2) A] practically linear hydrogen bond is situated 0.09 
from the centre of the bond. X-ray - neutron (X-N) difference Fourier syntheses have been calculated 
to illustrate the asphericity of the atomic charge distribution in the HsO~" and picrylsulphonate ions. 

Introduction 

The diaquahydrogen ion, H502 +, has been found in 
X-ray structure determinations of several hydrates of 
strong acids. However, no definite information as to 
the location of the hydrogen atoms of the HsOz + ion 
can be obtained from the X-ray studies. The configura- 
tion of the ion has thus been deduced from the posi- 
tions of the non-hydrogen atoms. A neutron diffrac- 
tion study of picrylsulphonic acid tetrahydrate was 
therefore undertaken to study the geometry of the di- 
aquahydrogen ion in more detail. In this compound 
the hydrogen atom in the very short O . . . O  bond has 
an asymmetric environment and is not forced by s,/m- 
metry to be located in the centre of the bond. The 
X-ray structure determination of picrylsulphonic acid 

* Part LXXXV: J. Chem. Phys. In the press. 

tetrahydrate has been reported earlier by Lundgren 
(1972). This work is part of a series of systematic 
studies of solid hydrates of strong acids currently in 
progress at this Institute. 

Crystal data 

2,4,6-Trinitrobenzenesulphonic acid tetrahydrate (pic- 
rylsulphonic acid tetrahydrate), 
C6H2(NO2)3SO3H.4H20. F.W. 365-23. Triclinic, a= 
8.346 (1),t b= 11.367 (1), c=8.065 (2) A~, a=97.77 (2), 
fl=109.32 (1), y=83.22 (1) °, V=713"2 A 3 at 22°C. 
Z = 2 ,  Dx= 1.701 gcm -3. Space group PI (Lundgren, 
1972). 

I" Numbers in parentheses here and throughout this paper 
a r e  the estimated standard deviations in the least significant 
digits. 

A C 30B - 4 


